Ingenieros del MIT descubren una nueva forma de controlar átomos en «Qubits»

El diagrama ilustra cómo dos rayos láser de longitudes de onda ligeramente diferentes afectan los campos eléctricos alrededor del núcleo, empujando contra este campo para empujar el giro del núcleo en una dirección específica como lo indica la flecha. Crédito: Haowei Xu, Ju Li y Paola Cappellaro, y todos

Los investigadores han encontrado una forma de controlar las propiedades de espín de los átomos que pueden almacenar información cuántica mediante láseres.

Los dispositivos basados ​​en la cuántica, incluidas las computadoras y los sensores, tienen el potencial de revolucionar la forma en que se realizan tareas complejas, superando las tecnologías digitales tradicionales. Sin embargo, a pesar de las importantes inversiones realizadas por empresas de tecnología, instituciones académicas y laboratorios gubernamentales, el desarrollo de dispositivos prácticos basados ​​en la tecnología cuántica sigue siendo un desafío importante.

Las computadoras cuánticas más grandes disponibles en la actualidad están equipadas con solo unos pocos cientos de «qubits», el equivalente cuántico de los bits digitales.

Ahora, los investigadores del MIT han propuesto un nuevo enfoque para crear qubits y controlarlos para leer y escribir datos. El método que en este punto es teórico se basa en medir y controlar los espines de los núcleos, utilizando haces de luz de dos láseres de colores ligeramente diferentes. Los hallazgos se describen en un artículo publicado en la revista Physical Review X.[{» attribute=»»>MIT doctoral student Haowei Xu, professors Ju Li and Paola Cappellaro, and four others.

Nuclear spins have long been recognized as potential building blocks for quantum-based information processing and communications systems, and so have photons, the elementary particles that are discreet packets, or “quanta,” of electromagnetic radiation. But coaxing these two quantum objects to work together was difficult because atomic nuclei and photons barely interact, and their natural frequencies differ by six to nine orders of magnitude.

In the new process developed by the MIT team, the difference in the frequency of an incoming laser beam matches the transition frequencies of the nuclear spin, nudging the nuclear spin to flip a certain way.

“We have found a novel, powerful way to interface nuclear spins with optical photons from lasers,” says Cappellaro, a professor of nuclear science and engineering. “This novel coupling mechanism enables their control and measurement, which now makes using nuclear spins as qubits a much more promising endeavor.”

The process is completely tunable, the researchers say. For example, one of the lasers could be tuned to match the frequencies of existing telecom systems, thus turning the nuclear spins into quantum repeaters to enable long-distance- quantum communication.

Previous attempts to use light to affect nuclear spins were indirect, coupling instead to electron spins surrounding that nucleus, which in turn would affect the nucleus though magnetic interactions. But this requires the existence of nearby unpaired electron spins and leads to additional noise on the nuclear spins. For the new approach, the researchers took advantage of the fact that many nuclei have an electric quadrupole, which leads to an electric nuclear quadrupolar interaction with the environment. This interaction can be affected by light in order to change the state of the nucleus itself.

“Nuclear spin is usually pretty weakly interacting,” says Li. “But by using the fact that some nuclei have an electric quadrupole, we can induce this second-order, nonlinear optical effect that directly couples to the nuclear spin, without any intermediate electron spins. This allows us to directly manipulate the nuclear spin.”

Among other things, this can allow the precise identification and even mapping of isotopes of materials, while Raman spectroscopy, a well-established method based on analogous physics, can identify the chemistry and structure of the material, but not isotopes. This capability could have many applications, the researchers say.

As for quantum memory, typical devices presently being used or considered for quantum computing have coherence times — meaning the amount of time that stored information can be reliably kept intact — that tend to be measured in tiny fractions of a second. But with the nuclear spin system, the quantum coherence times are measured in hours.

Since optical photons are used for long-distance communications through fiber-optic networks, the ability to directly couple these photons to quantum memory or sensing devices could provide significant benefits in new communications systems, the team says. In addition, the effect could be used to provide an efficient way of translating one set of wavelengths to another. “We are thinking of using nuclear spins for the transduction of microwave photons and optical photons,” Xu says, adding that this can provide greater fidelity for such translation than other methods.

So far, the work is theoretical, so the next step is to implement the concept in actual laboratory devices, probably first of all in a spectroscopic system. “This may be a good candidate for the proof-of-principle experiment,” Xu says. After that, they will tackle quantum devices such as memory or transduction effects, he says.

Reference: “Two-Photon Interface of Nuclear Spins Based on the Optonuclear Quadrupolar Effect” by Haowei Xu, Changhao Li, Guoqing Wang, Hua Wang, Hao Tang, Ariel Rebekah Barr, Paola Cappellaro and Ju Li, 14 February 2023, Physical Review X.
DOI: 10.1103/PhysRevX.13.011017

READ  Se esperan experimentos de simulación en la estación espacial de China para investigar la existencia de vida extraterrestre

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio